Just a T.A.D. (Traffic Analysis Drone)

Senior Design Project 2017: Midway Design Review

Department of Electrical and Computer Engineering

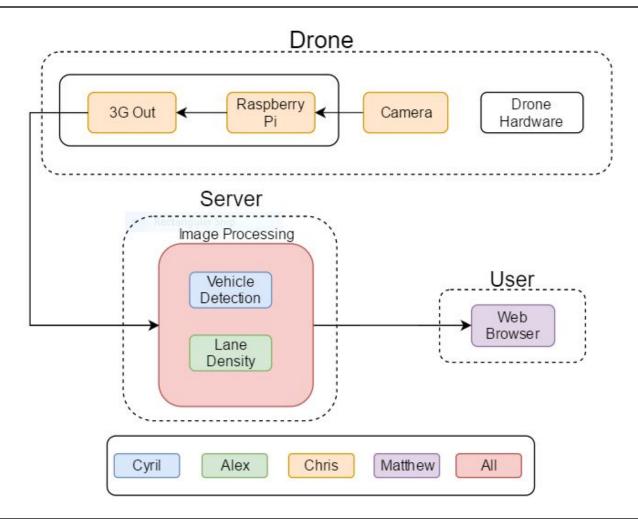
Meet the Team

Cyril Caparanga (CSE)

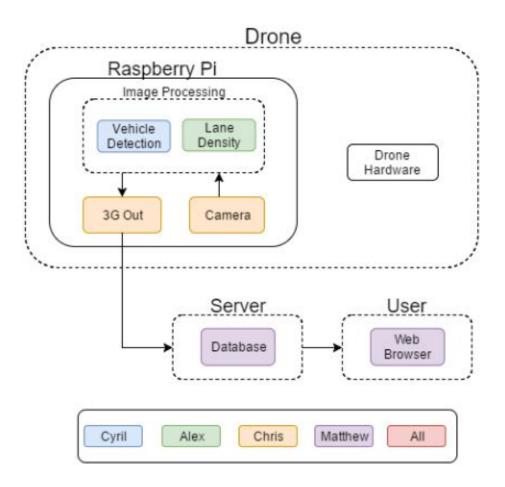
Alex Dunyak (CSE)

Christopher Barbeau (CSE)
 Matthew Shin (CSE)

System Requirements



Department of Electrical and Computer Engineering


Recap

- Traffic data needs to be more comprehensive as more and more cars are on the roads
- Current traffic data collection methods are expensive and/or insufficient
- An Unmanned Aerial Vehicle (UAV) can be used to provide aerial image and video
- Image processing will analyze the image/video for car density and spacing on the drone
- This data is sent to a server in the cloud for display

Block Diagram - PDR

Block Diagram - MDR

Drone - 3DR Iris+

- Cost: \$550
- Payload: 0.8lb
- Flight Time: 20 minutes
- Range: 1km
- Programmable Autopilot

Camera - Arducam OV5647 Video Module

- Resolutions: 1080p30, 720p60, 480p60
- Weight: 0.3 ounces
- Field of view: 2.0 x
 1.33m at 2m
- Angle of view: 54 x 41 degrees

Demonstration of Deliverables

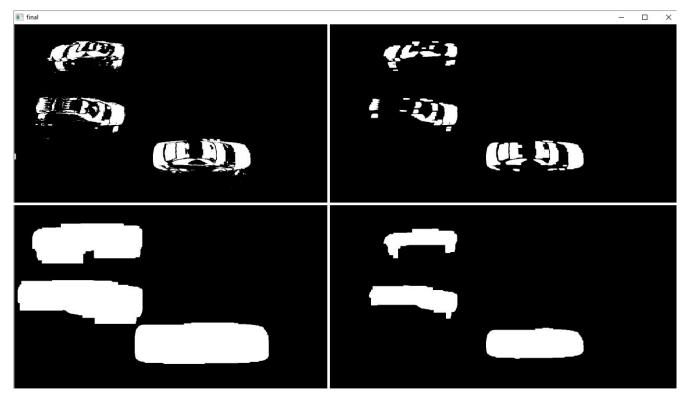
Department of Electrical and Computer Engineering

MDR Deliverables

- Alex/Cyril: Image processing
 - Identifies 80% of visible cars in ideal conditions in sample tests
 - Identifies distances between cars to within one car
 - Has 35 distinct test cases for our image processing software
- Matt: Data server for performing image processing and storing data is set-up
- Chris: Camera and network system can send image data to data server via 3G

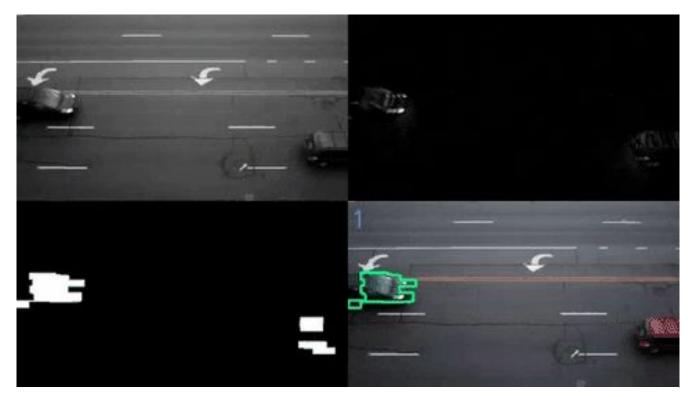
Image Processing Requirements

- Detecting Cars from a top down view
- Counting the amount of cars in the picture
- Distinguishing between different lanes of a highway
 - Determining spacing between cars in each lane


Image Processing Approach

- Background Subtraction
 - Drone takes images as initial "background"
 - Recursive averaging to estimate background
- Cropping
 - Remove traffic in opposite direction
 - Remove extraneous roads (ramps) and nonroad components
- Vehicle Detection
 - Use background subtraction as vehicles are only moving objects
 - Vehicles can be better segmented from background through thresholding

Image Processing Techniques


- Dilation
 - Rectangular kernel increases white regions in image via convolution
- Erosion
 - The opposite of dilation, decreases white region in the image via convolution
- Opening/Closing
 - Opening is erosion followed by dilation noise reduce
 - Closing is dilation followed by erosion gap fill
- Contour detection
 - Find curve containing group of points, essentially an outline of a shape
 - Can limit contour by size to filter shapes

Example - Opening/Closing

Top Left - Thresholding Bottom Left - Dilation Top Right - Opening Bottom Right - Erosion

Example

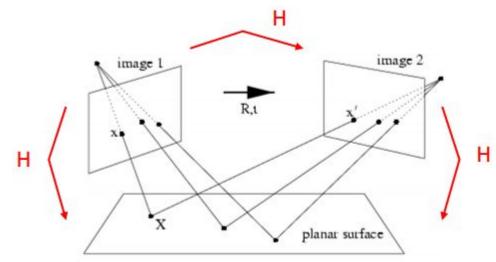
Top Left - Gray Scale Bottom Left - Closing Top Right - Thresholding Bottom Right - Contoured Original Image

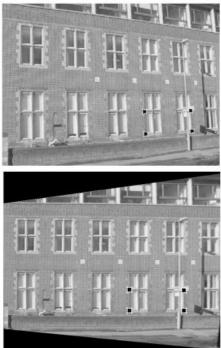
Our motion detection algorithm - High level

- Background subtraction is very sensitive to camera motion
- Overcome this by considering the fact that the drone moves relatively slowly
 - We can find a mapping from each frame to another frame a set amount of time (¹/₃ or ¹/₆ of a second) later.
 - By making this mapping, we can find the homography matrix that shifts the earlier frame onto the new frame.
 - The shifted image does not account for movement outside of drone movement, so we can feed it into a standard background subtraction algorithm.

Our motion detection algorithm - Cont.

- Background subtracted image can be passed to contour detection, which gives point descriptions of the motion found.
- Using a few more assumptions about the heading of the drone and the compass orientation of the road, we can find the distance between contours

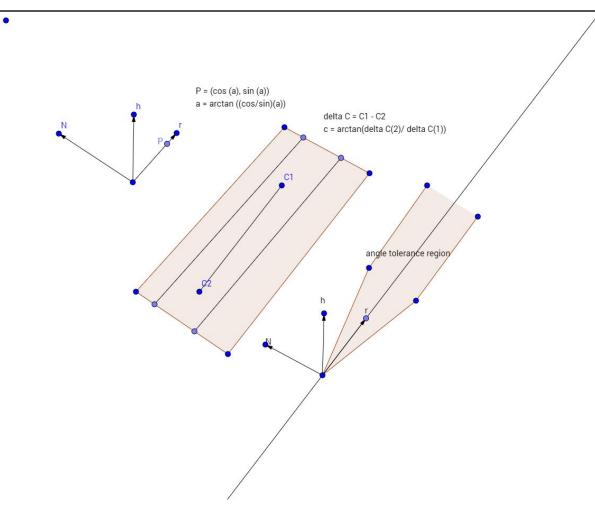

Finding keypoints between images


- SIFT Scale Invariant Feature Transform
 - (Lowe, 1999, International Journal of Computer Vision)
 - Allows robust image recognition

Finding the homography matrix

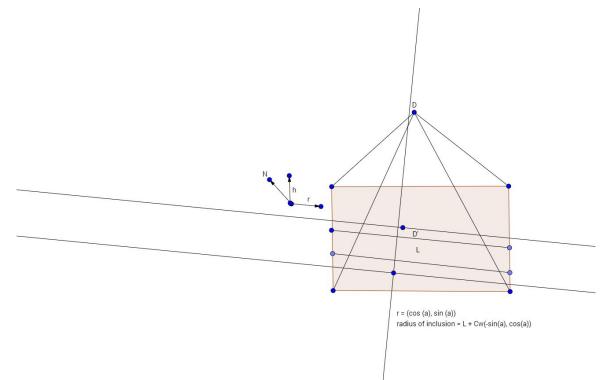
 A homography matrix is a 3x3 matrix describing the transformation from one perspective to another, such that lines are mapped to lines.

(Gava, Bleser)


Background Subtraction

- Uses the algorithm outlined in Zivkovic's "Improved adaptive Gaussian mixture model for background subtraction" (Conference on Pattern Recognition, 2004)
- Uses per pixel probability distributions to determine if an object is in the background (and static) or in the foreground (and moving)

Interval detection


- By assuming we know the heading of the drone from the internal compass and the compass direction of the road to a reasonably accurate degree before takeoff, we can find the vector between detected contours, and compare that angle to the expected road angle.
- If the angles are in a cone nearby and within two boundaries at a distance, then consider the number of pixels between the two the interval.

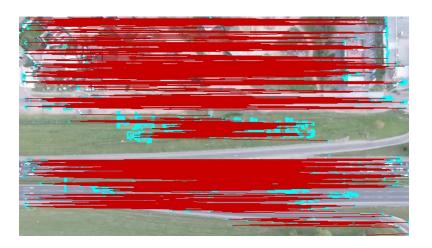
Interval Detection Diagram

Road Cropping

 Assume we know the heading of the drone and the road

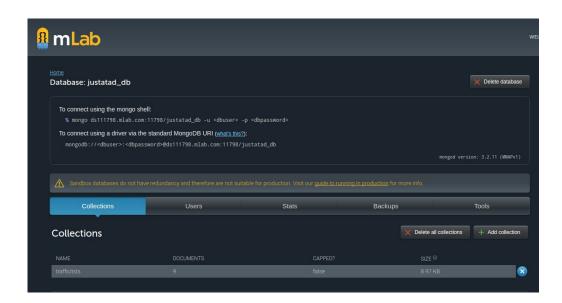
Department of Electrical and Computer Engineering

Results



Results

- In this sample, detects 28/30 cars in the lower lane.
- Sample collection
- troubles make a more rigorous analysis of lane detection difficult.


Internet Connection

- Take pictures at one second intervals
- Transmit processed image data over 3G to data server

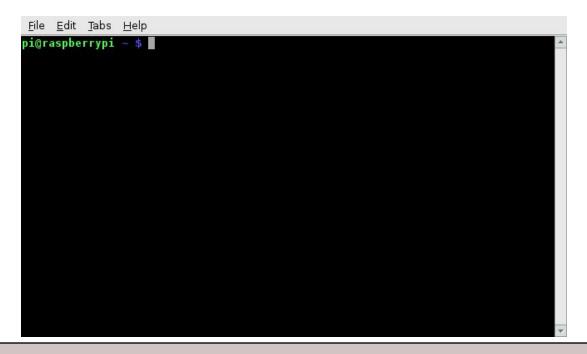
Data Server

- Server receives processed data (Density, Interval)
- Displays data on web page

Data Server Implementation

- Remove as much load from Raspberry Pi as possible for image processing
- Database hosted on cloud (mongolab)
 - Deployed on AWS (Reliable, free up to 500 MB)
 - Database visualization
- mongoDB
 - JSON documents allow for varying structure
 - Flexible (dynamic schemas)

Web App UI


- MEAN (MongoDB, Express, Angular, NodeJS) Stack web application to query database
- Hosted on cloud (Heroku)
- CRUD (Create, Read, Update, Delete) functionality for development

Just a T.A.D. Database

Density	Interval	Actions
34541111	3434	Edit Delete
2112	2212	Edit Delete
1000	1	Edit Delete

Raspberry Pi- Initial Setup

- Unpacked and Assembled
- Acquired a micro SD card and downloaded raspbian
- Installed Raspbian

3G Dongle

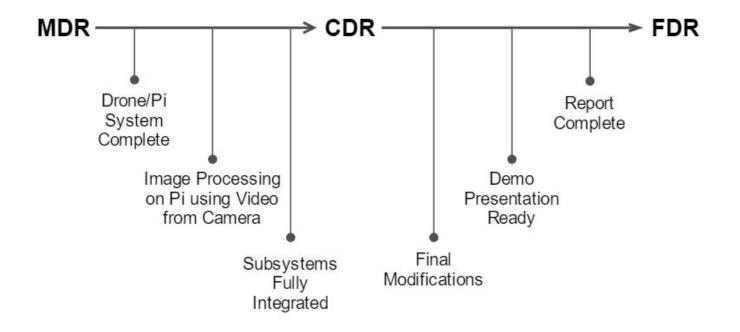
- Must Acquire 3G subscription
- Installed Drivers
- Hot Plugging
- Device Switching
- Sending HTTP Packets
- Dealing with Firewalls

Current Pricing - 3DR Iris+

Drone Camera	\$598 \$15
Raspberry Pi	\$50
3G Dongle 3G Subscription	\$34 \$25
FAA Registration	\$25 \$5
Total (with drone)	\$727
Total (without drone)	\$129

Team Responsibilities and Schedule

Department of Electrical and Computer Engineering


CDR Deliverables

- Alex/Cyril: Image processing
 - Identifies visible cars in own test images
 - Calculates density of cars as cars per distance or as car to road ratio
 - Integrate camera and server
- Matt: Data Server
 - Automatically update web app to display most recent database content
 - Assemble and test the 3DR Iris+
- Chris: Raspberry Pi
 - Camera interfaces with image processing software
 - Send image data to server via 3G

Expected for Project Completion

- Alex/Cyril
 - Alex: Completion and debugging of software
 - Cyril: Debug integration of software with camera and sending to server
- Matt
 - Become proficient in piloting the drone for demo
 - Test and debug webapp
- Chris
 - Ensure Pi/drone system is ready for testing/demo
 - Assist in final design testing and demo
- All
 - Assist with final report

Team Schedule

Thank You!

Questions?

Department of Electrical and Computer Engineering